Theoretical Ecology Webinar

We operate an international seminar series on Theoretical Ecology via Zoom since September, 2020. With some exceptions, the hour-long events are held on every other Tuesday at 9 a.m. Pacific Time, which corresponds to 5 p.m. in London and 6 p.m. in Paris most of the time. Our invited lecturer speaks for cc. 20-30 minutes. The rest of the hour is for questions and discussions, which are often lively. The seminars are recorded and posted on our YouTube channel. We send out notifications before each lecture via email and Twitter. The webinar is organised by György Barabás (dysordys@gmail.com), Géza Meszéna (meszena.geza@ttk.elte.hu) and Chris Terry (c.terry@qmul.ac.uk). Any comment, or suggestion are welcome.

Permanent Zoom link for the seminars

Calendar

YouTube channel

How to subscribe for email reminders?

Twitter feed

Scheduled lectures

Mathew Leibold (University of Florida): Linking process to pattern in community assembly in diverse metacommunities

28 September, 2021

I’m interested in exploring the degree to which theory on ‘disordered systems’ to community assembly can be linked to statistical methods of pattern analysis. Here, I hope to describe the problem and outline some possible approaches and answers. By doing so, I hope to generate interest and discussion on possible solutions.

Laura Dee (Colorado Boulder): TBA

12 October, 2021

Rachel Germain (UBC): TBA

26 October, 2021

Robert D. Holt (University of Florida): TBA

9 November, 2021

Jeremy W. Fox (University of Calgary): TBA

23 November, 2021

Ehud Meron (Ben-Gurion): TBA

7 December, 2021

Past lectures in reverse order

2021 Fall semester

Jacob D. O’Sullivan (Queen Mary): The emergent macroecology of Lotka-Volterra metacommunities

14 September, 2021 Video

For decades Lotka-Volterra community models have been used to try to understand how ecological interactions may drive community-scale properties such as species richness, network structure, and species abundance distributions; in short the various dimensions of biodiversity. Here I show how extending the basic community models into spatially and environmentally heterogeneous landscapes can help us understand how local scale ecological processes – abiotic and biotic filtering, and dispersal – can propagate up the organisational hierarchy to determine regional scale patterns in biodiversity.

2021 Spring semester

Rafael D’Andrea (Stony Brook): Counting niches: Can spatial patterns reveal niche partitioning in tropical forests?

29 June, 2021, Video

We investigate the idea that tropical biodiversity is maintained by a combination of niche segregation and niche sharing among species by asking whether tree species in Barro Colorado Island, Panama, fall into groups differing by the local conditions where they typically occur. We first group together species often found near each other, then show that the resulting three groups are statistically associated with distinct local nutrient levels. Finally, we find clear distinctions among those groups in traits associated with life history strategies.

Neo Martinez (Indiana University): Predicting Ecosystem Metaphenome from Community Metagenome: A Grand Challenge for Environmental Biology

15 June, 2021, Video

Theoretical ecology has investigated a series of concepts from stability and complexity through biodiversity and ecosystem function to coexistence and tipping points for which empirical data typically plays a less-than-satisfying role. To coax theoretical ecology towards increased empirical relevance and broader scientific synthesis, I propose that environmental biologists focus on predicting key characteristics of an ecosystem from the genotypes within its constituent communities. Such metagenomes effectively identify the organisms and their interactions within ecosystems. Following the first of several “virtual cells” built by systems biologists that predicts a human pathogen’s phenotype from its genotype, powerful social (e.g., structured collaborations), scientific (e.g., networks of networks) and technical (e.g., computer and data science) concepts for accomplishing the proposed task will be described along with a plausible workflow based on allometric trophic network theory. Anticipated benefits include more integrated, mechanistic, and predictive theory of how ecosystem structure and function emerge from organisms interacting within a habitat.

Chuliang Song (McGill University): An environment-dependent framework to study ecological networks

1 June, 2021, Video

Ecological networks—how species interactions are organized within ecological communities—are highly structured, which has motivated generations of ecologists to elucidate how these structures affect species coexistence. Unfortunately, we still do not have a clear and consistent answer about the link between network structure and species coexistence. A possible explanation is that most of the studies do not take into account that the environment affects both network structure and species coexistence due to the multidimensional and changing nature of environmental factors. In this context, the structural stability approach provides a theoretical framework grounded on biological realism to quantitatively link network structure, species coexistence, and environmental factors. In this talk, I will introduce the theoretical framework and computational tools of the structural stability approach, and present the empirical validation using field and experimental observations.

Cinzia Soresina (University of Gratz): The influence of cross-diffusion in pattern formation: multistability and Hopf bifurcations

18 May, 2021, Video

The Shigesada-Kawasaki-Teramoto model (SKT) was proposed to account for stable inhomogeneous steady states exhibiting spatial segregation, which describes a situation of coexistence of two competing species. Even though the reaction part does not present the activator-inhibitor structure, the cross-diffusion terms are the key ingredient for the appearance of spatial patterns. We provide a deeper understanding of the conditions required on both the cross-diffusion and the reaction coefficients for non-homogeneous steady states to exist, by combining a detailed linearised and weakly non-linear analysis with advanced numerical bifurcation methods via the continuation software pde2path. In particular, we study the role of the additional cross-diffusion term in pattern formation, showing that the bifurcation diagram undergoes major deformations leading to multistability regions. The presence of time-periodic spatial pattern appearing via Hopf bifurcation points is also investigated.

Masato Yamamichi (Brisbane): How does rapid evolution promote species coexistence?

4 May, 2021, Video

Previous studies have revealed that microevolution (i.e., temporal changes in allele frequencies) is pervasive in the wild and may be an important factor for understanding various ecological dynamics. Here, I show how rapid evolution can promote species coexistence via density-dependent sexual and social selection (intraspecific adaptation load: Yamamichi et al. 2020 Trends Ecol. Evol.) and resource-dependent adaptive foraging in limit cycles (relative nonlinearity: Yamamichi & Letten 2021 Ecol. Lett.). Then I will discuss the potential synthesis of theories on species coexistence and eco-evolutionary dynamics.

Priyanga Amarasekare (UCLA): Predicting the effects of climate warming: from chemistry to evolution

20 April, 2021, Video

I want to make the argument that understanding life on earth requires developing theory that integrates across levels of information, from chemistry to evolution. I am going to focus on temperature variation and phenotypic plasticity, not least because temperature is integral to all life processes, and climate warming poses one of the greatest threats to life on earth. Predicting the effects of warming requires knowing whether organisms have sufficient plasticity to respond to current levels of warming, and whether plasticity can evolve fast enough to keep pace with warming. But, existing plasticity is the result of past evolution, while future plasticity is the result future evolution. My thesis is that chemistry is integral to both understanding past evolution and predicting future evolution. I will present theory and data to support this idea and discuss future research directions.

György Barabás (Linköping University): Coexistence and parameter sensitivity in stationary aperiodic environments

6 April, 2021 Video

First, I present a method for calculating how average population densities respond to parameter perturbations when the dynamics are periodic, and show that this practical problem holds a strong connection with basic questions of coexistence. I then generalize this result to stationary nonperiodic density fluctuations. I finish by discussing the connection with existing formalisms for understanding coexistence in variable environments.

Theresa Ong (Dartmouth): Complex hysteretic patterns: hidden loops and ecological traps

23 March, 2021, Video

Critical transitions whereby small changes in conditions can cause large and irreversible changes in ecosystem states are a cause of increasing concern in ecology. Here, I focus on the irreversibility of these transitions, formally known as hysteresis. I will discuss a variety of complicated hysteretic patterns derived from theory and experiments, which include “unattainable” stable states that once lost may never be recovered.

Géza Meszéna (Eötvös University): Coexistence, niche, adaptation and all that…

9 March, 2021, Video

Why are there so many animals? According an old idea, it is because there are so many different possibilities for life to adapt to. I’ll argue that it is still true, and truer than the suggested alternatives. The challenge is to establish the precise mathematical treatment at this level of generality without losing the reach to the phenomenal complexity of ecosystems.

James O’Dwyer (University of Illinois): Cooperation, Resource Exchange, and Stability

23 February, 2021, Video

Models of microbial interactions have been developed in recent years, drawing from taxonomic abundances via amplicon sequencing. Many of these models assume that dynamics through time are primarily driven by pairwise interactions between taxa, but with the drawback that how these interaction strengths may change with environmental context is less than clear. Here we model the consumption and exchange of resources explicitly, and show that these processes imply new results and principles for the stability of ecological communities.

Thomas Koffel (Michigan State): A niche theory of positive interactions

9 February, 2021, Video

Niche Theory has traditionally focused on competitive interactions. In this talk, we propose a general framework that expands the theory to positive interactions, such as facilitation and mutualism, using angular metrics of niche difference. We develop novel niche concepts such as the Allee niche and niche expansion, and illustrate them using a diverse set of theoretical examples.

Stephen Ellner (Cornell): An invitation to spatial coexistence theory

26 January, 2021, Video

Previously in this series Sebastian Schreiber reviewed stochastic coexistence theory for infinite population models, based on long-term population growth rates of (infinitesimally) rare invaders. Nadav Shnerb presented progress on the challenges posed by demographic stochasticity, in finite populations of discrete individuals. Today we add one more complication: spatial structure and local movement, so that invader populations are clumped, and locally common even when globally rare.

Camille Carpentier (University of Namur): A new link-species relationship connects ecosystem structure and stability

14 January, 2021, Video

How does an ecosystem’s structure determine its capacity to cope with species removal and perturbations of species densities? To answer this question, we develop a network-specific approach to the link-species relationship, and demonstrate that it formally predicts a robustness-resilience trade-off, both theoretically and in empirical networks.

2020 Fall semester

Nadav Shnerb (Bar Ilan University): Quantifying coexistence

8 December, 2020, Video

Modern coexistence theory employs mutual invasibility as a coexistence criterion and mean growth rate when rare as an invasibility criterion. When implemented as quantitative metrics, both criteria have shortcomings: persistence time may decline when the chance of invasion grows, and invasibility may decrease as the mean growth rate increases in magnitude. I will discuss an alternative framework and introduce a new metric for invasibility under both demographic and environmental stochasticity.

Stefano Allesina (University of Chicago): A metapopulation model in which patches have memory

24 November, 2020, Video

Levins’ metapopulation model has been extended in numerous ways. Here we analyze a model in which species have distinct colonization rates that depend on which species previously occupied the patch. We connect this model to the Janzen-Connell hypothesis and show some surprising behavior for a simplified version of the model.

Sebastian Schreiber (UC Davis): General theorems for coexistence and extinction in stochastic models

9 November, 2020, Video

In the 1980s, Josef Hofbauer introduced a criterion for mathematically verifying coexistence using per-capita growth rates of species when rare i.e. Lyapunov exponents. This criterion ensures coexistence is robust to large perturbations of the community state (i.e. permanence) and small structural perturbations of the governing equations (i.e. robust permanence). Originally developed for deterministic models without population structure, Hofbauer’s criterion has been extended in the past decade to models allowing for auxiliary variables and environmental stochasticity. In this talk, I review the key ingredients of this theory and illustrate its use in multi-species models with intransitivities, eco-evolutionary feedbacks, sexual dimorphisms, autocorrelated environmental fluctuations, or spatial structure.

André M. de Roos (University of Amsterdam): Towards a general theory of coexistence: Lyapunov exponents, auxiliary variables, and Hofbauer’s criterion

27 October, 2020, Video

Dynamic models of ecological communities that neglect within-population structure predict that stability depends on substantial self-limitation of species. Using a stage-structured food web model I show that differences between juveniles and adults result in diverse ecological communities that are stable or exhibit limited-amplitude fluctuations, despite that only a single basal species is self-regulated. Eigenvalue analysis reveals that community stability results from dynamic changes in within-population stage-structure that override destabilising effects induced by the species interaction network.

Vadim Karatayev (University of Guleph), with Vadim Karatayev, Marissa Baskett, Egbert van Nes, Marten Scheffer: Species heterogeneity can reduce the potential for alternative stable states in food webs

13 October, 2020, Video

Can alternative stable states arise when food webs dissipate feedbacks across many species in diverse systems like coral reefs? Although consumer loss often characterizes degraded ecological states, food web resilience theory predominantly focuses on specific systems and few-species models. After developing a generalized model of consumer collapse, we show that alternative stable states dominated by either consumer or resource guilds can arise when consumer species improve conditions in the same way, for instance when different herbivore species promote habitat-forming corals by limiting the total cover of macroalgae. Conversely, specialized feedbacks where size refugia or group defense make individual resource species inedible are less likely to drive many-species alternative stable states because losing the most vulnerable consumers cascades into a guild-wide collapse.

Éva Kisdi (Helsinki): The evolution of habitat choice facilitates niche expansion

29 September, 2020, Video

Matching habitat choice and local adaptation are two key factors that control the distribution and diversification of species. We study their joint evolution in a structured metapopulation model with a continuous distribution of habitats. Habitat choice follows from dispersal with non-random immigration, a process always acknowledged yet rarely incorporated into theoretical models. For fixed local adaptation, we find the evolutionarily stable habitat choice as a function linking the probability of settlement to the local environment. When the local adaptation trait co-evolves, the metapopulation can become polymorphic. Our main result shows that coexisting strains with only slightly different local adaptation traits evolve substantially different habitat choice. In turn, different habitat use selects for divergent local adaptations. We thus propose that under wide conditions, the joint evolution of habitat choice and local adaptation can facilitate niche expansion via diversification.

Guy Bunin (Technion, Haifa): Phase-transitions as signatures of complex communities

15 September, 2020, Video

 What characterizes species-rich communities with complex species interactions–for example, competing over many niches? Models predict sharp transitions, as conditions are changed, between qualitatively different dynamical behaviors. These include the abrupt appearance of a vast number of alternative steady-states; and the onset of persistent abundance fluctuations, nearly uncorrelated between species. We discuss these phenomena, and how they differ from related low-dimensional behavior.